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In the present work we propose a numerical approach to estimate the 
harmonic and anharmonic force constant matrices, supposing we are able to 
compute analytically the first order derivative vector of the potential energy 
surface with respect to the internal coordinates. We use a polynomial least 
square fit to interpolate this gradient in the stationary point region. The 
structure of the regression matrix shows that the harmonic force constant 
matrix may be obtained even for large molecules; the evaluation of the 
anharmonic contributions request slightly more labor but is possible for 5 to 
7 atoms. The present work is applicable even at the CI level and the number 
of computations remains small. We use the experimental planification to 
select the geometries to be computed in order to improve the estimation of 
the regression coefficients i.e. this means to lower their variance. 
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1. Introduction 

The problem of computing the successive derivatives of the potential energy 
surface with respect to any degree of freedom (in a polyatomic molecule, around 
a stationary point of interest) is essential to the estimation of some molecular 
properties related to the nuclear motions such as" (i) the vibrational-states and 
transitions, (ii) the thermodynamical properties [2] and (iii), via the transition 
state theory, the reaction rate [3]. 
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in the last years different methods have been developed to compute the gradient 
and the force constant matrix. At  the present time a purely numerical approach 
is feasible for not too large molecules (up to seven atoms) if we accept the 
harmonic approximation [4]. Nevertheless for analysing more complex chemical 
compounds or for extending the analysis up to the third order derivatives such 
an approach becomes rapidly expansive. On the other hand the analytical 
computation of the gradient [5] (a first order property) may be done even at 
the CI level [6]. The problem is more difficult for the harmonic force constant 
matrix (a second order property) and is only solved at the SCF level [5, 7]. For 
higher order derivatives and for medium size molecules this computational 
problem remains open. According to an idea of Pulay [8] we propose to compute 
analytically the gradient vector and numerically the next derivatives. 

In this work we define an appropriate strategy to reach this goal. If we develop 
the potential energy surface as a polynome of order 2 or 3, we show that it 
exists point distributions particularly well suited for the gradient fitting. 

2. The Regression with the Gradient 

The potential energy surface (E) of a chemical system of interest can be expressed 
as a function of the internal coordinates (s): 

E = E ( s l ,  s 2"  �9 " s k )  

usually k = 3 N -  6 if N is the atom number. 

Assuming that the limited region of immediate interest around a central point 
So in the internal coordinate space is not too large, we develop the potential 
energy in Taylor's series; if S stands for the column vector of the internal 
displacements s -  So, we have: 

E ( S )  = E o  + S '  go + 1 / 2 S ' H o S  + � 9  �9 (1) 

where Eo = E ( s o ) ,  go = (VE)so and Ho = ([VV']E)so. 

If we have at our disposal a method which only provides the first derivative 
vector of the energy with respect to the internal coordinates ( g ( S ) ) ,  the problem 
is how to compute the next derivative matrix and/or  hypermatrices. The simplest 
method we can use comes out by differentiating the Eq. (1): 

g ( S )  = go + H o S  +"  �9 �9 (2) 

If we compute the gradient vector g ( S )  in k different (and non linearly related) 
points of a purely quadratic hypersurface we have: 

[ ( g ( S 1 ) l g ( S 2 ) l  . " . g ( S k ) ) -  g o ] ( S l l S 2 1 "  " S k )  -1  = H o  (3) 

Nevertheless in practice such an approach leads to non symmetrical H0 matrix; 
more over it cannot permit to go further than the quadratic approximation. In 
order to bypass those difficulties let us replace the Eq. (1) by a local polynomial 
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expansion up to order n: 

E (S)  = ( I l SE"~) ( - ~ ] )  (4) 

The column vector b stands for the vector of the expansion coefficients: 

b t '] '= (bl . . .  bk, b l l  . . .  bkk, b21 . . .  bkk-1 . . . .  ) (5) 

The line vector S E"1 is the model vector (for the simulation process), it contains 
the functional values of the fitting at any point of coordinates S: 

S [n] = ( S l  �9 �9 �9 Sk, S 2 . . .  8* 2, S 2 S l . . .  SkSk-1 . . . .  ) (6) 

By differentiating the Eq. (4) with respect to any internal coordinate we have 
the following set of equations: 

. dS[ , l , 
(~SE/) s = g i ( S ) = l - - ~ i ) s b [ " ~  Vi= l t o k  (7) 

or more simply: g = Z b  [~3. (8) 

If we dispose of m * k  gradients for m points suitably distributed around the 
central point So (with 1/k(k~+")_ < m), the problem becomes a least square fit 
problem for with the solution is: 

b ~"] = ( Z ' Z ) - I Z ' g  (9) 

It follows that the quality of the b E"] coefficients is closely related to the point 
distribution (so called experimental design) through the inverse product ( Z ' Z )  -1, 
a s :  

Var  (b ['~) = ( Z ' Z ) - l o  "2 (10) 

where o -z stands for the error variance. 
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3. Second Order Regression Designs (n = 2) 

Assuming firstly a quadratic approximation for the potential energy hypersurface, 
we have to find an experience plane, which gives to the variance-covariance 
matrix ( Z ' Z )  -1 a good structure in order to improve the quality of the b [2] 
expected values. The Z ' Z  matrix becomes orthogonal if: 

F S , (P)  = 0 V i  
P 

~, S~(P)Sj(P) = 0 Vi  ~ j 
P 

In such a case all the coefficients b are independently estimated and the deter- 
minant of the matrix Z ' Z  is maximized. The simplex [9] or the centered simplex 
plane meet this requirement; this trivial experimental design contains only k + 1 
or k + 2 points which is enough to estimate t h e  (k~-2) _ 1 regression coefficients of the 
quadratic approximation when the gradient vector is every times provided. The 
corresponding experience matrix is: 

P 

m 

p1A1 p2A2 �9 . . p k A k  

--qlA1 p2A2 �9 . . p k A k  

0 --q2A2 . . �9 p k A k  

0 0 . . . q k A k  

0 0 . . .  0 

l . . .  i . . .  k 

where 

Pi = 1 / (2 i [ i  + 1]) 1/2 

qi = ipi 

and Ai stands for a scaling factor which defines the step size around the central 
point So in each coordinate space direction (&(p)=  &o+ Ai times Pi, - q i  or 0). 

So we find the following expressions for the b ~21 coefficients: 

g 
b, 

- ~ A i  p I dSi . d i + 1  
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2 i d d E  

+ i d E  d E  piAi[p~=l (~i)p-i(d~)i+m]} 
Then the regression program does not require the storage of any large matrix; 
in fact we chiefly need only one large vector as long as the first derivative number. 
For example for 12 atoms and 30 degrees of freedom we need only 32 gradients 
computations in order to evaluate 495 regression coefficients. If the chemical 
system of interest contains some symmetry operator the computation number 
may be shortened (for the benzene molecule only 11 gradients are requested 
[25]). 

On the other hand the problems of numerical stability during the inversion are 
eliminated. From our experience they appear for molecules having more than 
12 degrees of freedom when large and small force constants have to be simul- 
taneously estimated [26] (in the quadratic approximation domain it is not always 
possible to widen enough the step size in the directions corresponding to the 
small forces). One advantage more in using this simplicial approach is that such 
a design may be translated in the k-dimensional space of the factors by recomput- 
ing only one vertex (plus one central point). 

4. Third Order Regression Design (n = 3) 

The knowledge of the third order derivative hypermatrix will become more and 
more interesting in vibrational analysis. Until now the success of the harmonic 
approximation for the vibrational analysis of the polyatomic systems is due to 
available level of accuracy and to the difficulties to obtain information about 
the anharmonicity [10]. Nevertheless for some small systems a more detailed 
analysis exist [11, 12] from a long time ago. 

By using a regression on the gradient we only need second order design to 
estimate the third order derivative hypermatrix. It exists mainly two types of 
such designs: 

- the Doehlert 's planes [13]; 

- the composite planes [14]. 

As already discussed elsewhere [4] the Doehlert 's planes are particularly useful 
to scan a certain portion of the potential energy surface. For our actual purpose 
it seems to be more interesting to employ the composite planes. Those designs 
are built up by combining the following geometrical figures in the internal factor 
space (see Fig, 1): 

(1) a central point; 
(2) a factorial plane (a square for k = 2, a cube for k = 3 or an hypercube for 
k - 4 )  with 2 k vertices (or a fractional replicate of this plane with 2 k-p vertices); 
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Fig. 1. The two and three dimensional composite planes 

(3) a cross or a cross polytope with 2k vertices. 

We have now to choose an appropriate value for the arm cross length (a in 
Fig. 1). We will be particularly interested by the orthogonality property which 
leads to an independent  evaluation of the regression coefficients. 

The composite planes have the next properties: 

Z Si(p) =O 
p 

ZS~(p)S~(p)=O 
p 

Y, S,(p )Si(p)St(p) = 0 
p 

Z S~(p)Sj(p)  = o 
p 

Z s~ (p) = o 
p 

2 Si (p)Si (p)St (p)S , . (P)  = 0 
p 

Z s~ (p)s~(elS , (e)  = o 

Vi from 1 to k 

Vi # j # from 1 to k 

V i # j ~ l  from 1 to k 

Vi # j from 1 to k 

Vi from I to k 

V i # j # l #  m from 1 to  k 

Vi # j # i from I to k 

Y~ S~ (p)Sj(p)  = 0 Vi ~ ] from 1 to k 

It follows that the Z ' Z  matrix at the third order regression level on the gradient 
has the form: 

MI.. " ~  I 

-. 0 

Z ' Z  -- ~gk.. 
0 
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where, if 

B, = E S~ (p) = (N~ + 2a2)a ,  ~ 
P 

C, = E S 4 (P) = (NF + 2a4) A4 
P 

Do = ~. 2 2 2 2 S l (p)S] (p) = NFAi Aj 
P 

we have for example for the block ~r 

549 

_1 
_111 

!22  

~i = !33  

m 

3B1 9C1 

B2 3D12 4Da2 + C2 

B3 3D13 D23 

Bk 3Dlk D2k 

! !ii !22 

4D13 + C3 

D 3 k  . . . 

!33  . . .  

4Dlk  + G 

! k k  

and for the remaining block ~ :  

11 

kk  

21 

kk  - 1 

321 

kk  - l k  - 2  

4B1 ~ 

4nk ~ 

B2+B1 0 

B2 + Bk-1 

~ 3 D  

3D 

l l . . . k k ,  2 1 . . . k k - 1 ,  3 2 1 . . .  k k - 1  k - 2  

From the structure of Z ' Z  we conclude that the inversion of such a matrix 
requests at least (if all sl are different) to inverse independently k blocks M(k + 1 
times k + l )  and one diagonal block ~ (r times r, if r = k + k ! / 2 t ( k - 2 ) ! +  
k t / 3 ! ( k - 3 ) ! ) .  In order to avoid a too long discussion we here only investigate 
the inversion of one M matrix for which all the sl terms are equal. The following 
results appear:  

(1) The case for which a = 0 (that corresponds to the disappearance of the cross 
polytope structure) does not lead to a singular Z ' Z  matrix as it does for the 
regression on the energy [15]. Moreover  it produces a M71 matrix which may 
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be  ca l led  q u a s i - o r t h o g o n a l :  

a 

-a/3 
MF I (a = O) = 0 

0 

r 

- e / 3  e 

- e / 3  0 e 

0 - e / 3  0 0 . . .  e 

(2) A n o t h e r  k ind  of q u a s i - o r t h o g o n a l i t y  m a y  b e  bui l t  up  b y  using for  a :  

N e :  bey ing  the  n u m b e r  of ver t ices  in the  fac tor ia l  p lane .  

In  this  case  we have  for  M - t :  

a 

b c 

d 0 e 

Mi - ~ ( a = a . ) =  d 0 0 e 

d 0 0 0 . . .  e 

In  T a b l e  1 we p r e s e n t  the  d e t e r m i n a n t  of the  m o m e n t  ma t r ix  (det  [ ( 1 / m ) M ' M ] )  
c o r r e s p o n d i n g  to any  b lock  M. 

W e  see  tha t  even  the  po in t  n u m b e r  is increas ing  by  the  add i t i on  of the  cross to 
the  fac tor ia l  p lane ,  the  d e t e r m i n a n t  of the  m o m e n t  ma t r ix  b e c o m e s  h igher ;  tha t  
c o r r e s p o n d s  to a pa ra l l e l  dec rea s ing  of  the  va r i ance  of  any  regress ion  coefficients.  

A c c o r d i n g  to  the  last  d iscuss ion  we p r o p o s e  to fo l low a p r o c e d u r e  which  enab l e  
us to c o m p l e t e  p rogres s ive ly  ou r  expe r i ence  p lane .  F i rs t  of all we s ta r t  wi th  the  
lowest  poss ib le  f rac t iona l  r ep l i ca t e  ((�89 of  the  c o m p l e t e  fac tor ia l  p l ane  [16]. So 

Table 1. Determinant of the matrix (1/mJ'M)* for different planes 
assuming that all points are in a sphere of radius 1.0 

k a = 0 (without cross) a = a i  (with cross) 

3 1.124 101 1.539 101 
4 2.656 101 6.880 101 
5 5.986 101 3.138 102 
6 1.292 102 1.310 10 3 

* The moment matrix (1/m)M'~r let us enable to compare the efficiency 
of planes which have not the same number of vertices; evolution of 
determinant of (1/rn)Z'Z is strictly parallel to the one of (1/m)~r162 
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we choose the smallest p value which satisfies the following inequality [17]: 

After a first estimation of the regression coefficients b tsl we can increase p each 
time by 1, till the correlation coefficient becomes sufficiently good and the 
regression coefficients enough stable. A last check may be done by adding the 
cross polytope with an appropriate a value. We must also keep in mind that 
the use of an enough large second order composite plane let us enable to check 
the accuracy of the quadratic terms by regression on the energy only. 

Finally such kind of planes may be used to evaluate some fourth order regression 
coefficients such as b,gt or  b i i i k .  Taking those coefficients together with the 
preceding one we do not disturb the structure of the regression; we only add 
one diagonal block in the Z ' Z  matrix. For numerical convenience it seems to 
be important to inverse the Z ' Z  matrix block after block and not to inverse it 
at one time. 

When we are not sure to have to compute the third order regression coefficients, 
we can ask that our first experimental plane would be adequate for estimating 
the harmonic terms as well as possible and keeps the capability to be completed 
for estimating properly the anharmonicity contribution. In order to meet  this 
requirement an alternate procedure may be applied. We start with the centered 
cross design which needs 2k + 1 computations. This old design is adequate (as 
well as the preceding simplex plane) to estimate the second order regression 
coefficients by using the gradient fitting. 

The corresponding regression coefficients expressions are: 

m p 

b i i  = 4 o L A  i , s ~ A  S = - - ~ A  i 

1 A dE dE 
i - -  - -  - -  

As shown in Table 2 the cross plane remains approximately as efficient as the 
simplex one according to the D-optimality;  if it contains more points, it can be 
completed by factorial plane for estimating the anharmonicity contributions. All 
this shows the large flexibility of such an approach which may be adapted to 
any purposes we have. 

In the regression here presented we only use the gradient vectors for different 
nuclear structures well distributed; the available information concerning the total 
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Table 2. Comparison between simplex plane and cross plane assuming an experimental domain 
of radius equals to 1 

Simplex design a Cross design b 
k det (Z'Z) det (1/mZ'Z) c det (Z'Z) det (1/mZ'Z) c 

3 3.596 10 s 1.841 10 -1 1.756 l0 s 4.352 10 -3 
6 8.958 1014 3.705 10 -1~ 6.478 1014 5.432 10 -16 
9 4.867 1027 2.832 ]0  -29 5.813 1027 5.149 10 -42 

afor simplex: At = (2(k + 1)/k)'l/2Vi = 1, k in order to normalize the plane at radius = 1. 
b for cross: aAi = IV/= 1, k in order to normalize the plane at radius = 1. 
c the moment matrix M = 1/mZ'Z let us enable to compare the efficiency of planes not 
having the same number of vertices. 

ene rgy  is comple te ly  neglected.  In  fact it is possible to in t roduce  both  energy  
and gradient  in the least square  fit. Nevertheless  this p rocedure  des t roy the 
proper t ies  of  the Z ' Z  matrix with does not  remain  or thogonal .  M o r e o v e r  even 
if we accept  to pay  the numerical  inversion of  the new Z ' Z  matrix conclusion 
drawn f rom exper ience  is that  the result  is less satisfactory; in part icular  the 
corre la t ion coefficient goes down and the regression coefficients cor responding  
to the  highest  degree  are badly est imated.  

5. The Bias Analysis 

The t runcated  Taylor  expansion we use to represent  the domain  of interest  in 
the k -d imens iona l  potent ia l  hypersur face  is not  always adequate .  It follows that  
the es t imator  of the regression coefficients ({b}) are biased by higher  order  terms 
not  included in the expansion.  

The  s tructure of the so called "al ias"  matr ix (A) tell us how the biased coefficients 
({b}) are related to the unbiased est imates ({fl}): 

A = ( Z ' Z ) - l Z ' (  

where  ( is the complemen t  of  the Z matrix for  a more  accurate  Taylor  expansion 
( z  t"+'J = ( z  r"l i~)). 

For  the simplex plane (using the exper imenta l  matrix defined before  with Ai = 1 
Vi f rom 1 to k), it appears  that  the first and second order  regression coefficients 
are biased by  the third o rder  terms;  i.e. 

1 k 

b, o = / 3 '  o 3 ( i -  1)P,/3oi + �89  PgJ~ + Z Ptfl,~ 
2 l.~i l>i 
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bg~ ~ +p--i E {l + 2&,+(2-jlSjt}/3~ 
2 1~1~i 

+ l ~  Y. [1- ia,,]/3,~ 
2 ( l_<z_<i 

Pl,- ,o _ o + 2. ~p . j , -  E p~/3,. V i</  
i<l<!" j<l<--k 

the superscript 0 indicates that we are referring to the normalized plane (A~ = 1). 

If the simplex design is adequate in terms of the regression coefficient variance, 
it becomes less efficient in terms of bias, specially for the second order terms 
(b, and bq). On another hand the cross plane, as efficient as the simplex one 
according to the coefficient variance, is less disturbed by the truncation error; 
the first and second order terms are respectively biased by the third and fourth 
order terms: 

2 k 
b~ =/3~ Z ~ 

1=1 

bO= o o 
/3ii + 2/3iiii 

b iOi = o o o /3ij"}-(/3iiil-'}-/3ijjj)/2 Vi ~ j 

(the points stands at O, +1 and - 1  on each space direction). 

Going now to the quasi-orthogonal third order designs: 
- t h e  complete centered factorial plane (the centered square, cube . . . .  without 
cross, a = 0); 
- the composite plane with a = a• the alias matrix gives the following relations: 

b o =/30 

b o. o 
. =/3 il -~ 

1 k 
+ a  /2  )a/l]/3/in 1+a2/2  k-1/=1 y'~ [1+(1 4 k-2 o 

1 + c~2/2 k'* ,=1 y' [1 + (1 + og4/2k)(t~il + t~]l)]/3101l 

0 bi,,i,, = ~O'i" 

Vi#j 

All this shows that the factorial and composite designs are not too bad; bias 
exists only between second and fourth order terms. As usually the stepsize (h) 
in each space direction is of about 10 -2 lk or radian, the unnormalized regression 
coefficients ({b}) are related to the normalized one ({b~ by: 

b = (10-2)~b~ and /3 = (10-2)'/3 0 

where r stands for the number of indices of the considered b or/3 coefficient. 

in any case the distance between the vertices of the factorial plane and the origin 
is 4k. 



4
x

 

T
ab

le
 3

, 
H

ar
m

on
ic

 f
or

ce
 c

on
st

an
t m

at
ri

x 
fo

r 
sa

m
e 

sm
al

l 
co

m
po

un
ds

 (
de

ri
va

ti
ve

s 
in

 a
.u

. 
fo

r 
en

er
gy

, 
~ 

fo
r 

b
o

n
d

 l
en

gt
hs

 a
nd

 r
ad

ia
ns

 f
o

r 
an

gl
es

) 

M
ol

ec
ul

e 
H

2
0

 
N

H
2 

P
la

ne
 

S
im

pl
ex

 
C

o
m

p
o

si
te

 
S

im
pl

ex
 

C
ro

ss
 

F
ac

to
ri

al
 

C
om

po
si

te
 

C
om

po
si

te
 

F
ac

to
ri

al
 

R
eg

re
ss

io
n 

G
ra

di
en

t 
G

ra
d

ie
n

t 
E

n
er

g
y

 
G

ra
d

ie
n

t 
G

ra
d

ie
n

t 
G

ra
d

ie
n

t 
G

ra
d

ie
n

t 
G

ra
d

ie
n

t 
E

n
er

g
y

 
G

ra
di

en
t 

O
rd

er
 

2 
2 

2 
3 

2 
2 

2 
2 

2 
3 

P
oi

nt
 n

um
be

r a
 

5 
11

 
11

 
11

 
5 

5 
7 

11
 

11
 

7 

s e
 

0,
99

99
 

0.
99

91
 

0.
99

98
 

0.
99

99
 

0.
99

99
 

0,
99

95
 

0.
99

96
 

0.
99

96
 

0.
99

99
 

0.
99

99
 

S
ec

on
d 

de
ri

va
ti

ve
s 

11
 

2.
16

3 
2.

14
9 

2.
14

6 
2.

14
8 

1.
67

3 
1.

66
6 

1.
66

2 
1.

66
3 

1.
66

2 
1.

66
4 

22
 

2.
16

3 
2,

14
9 

2.
14

6 
2.

14
8 

1.
67

3 
1.

66
6 

1.
66

2 
1.

66
3 

1.
66

2 
1.

66
4 

33
 

0.
17

8 
0.

17
6 

0.
17

6 
0.

17
6 

0.
18

3 
0,

18
1 

0.
18

1 
0.

18
1 

0.
18

1 
0.

18
1 

12
 

-0
,0

4
5

 
-0

.0
3

3
 

-0
.0

3
3

 
-0

.0
3

3
 

-0
.0

3
0

 
-0

.0
1

8
 

-0
.0

1
8

 
-0

.0
1

8
 

-0
,0

1
8

 
-0

.0
1

8
 

13
 

0,
07

1 
0.

07
3 

0.
07

4 
0.

07
4 

0.
06

9 
0.

07
0 

0.
07

0 
0,

07
1 

0.
07

1 
0,

07
1 

23
 

0,
07

1 
0.

07
3 

0.
07

4 
0.

07
4 

0.
06

9 
0.

07
0 

0.
07

0 
0.

07
1 

0.
07

1 
0.

07
1 

S
ta

ti
on

ar
y 

po
in

t 
d

l 
(/

~)
 

0.
94

97
 

0.
95

00
 

0.
94

99
 

0.
94

96
 

1.
01

46
 

1.
01

47
 

1.
01

49
 

1.
01

49
 

1,
0!

47
 

1.
01

45
 

d2
 (

~
) 

0.
94

97
 

0.
95

00
 

0.
94

99
 

0.
94

96
 

1.
01

46
 

1.
01

47
 

1.
01

49
 

1.
01

49
 

1.
01

47
 

1.
01

45
 

~
(~

 
11

1.
43

 
11

1.
64

 
11

1.
61

 
11

1.
54

 
10

8.
54

 
10

8.
58

 
10

8.
64

 
10

8.
63

 
10

8.
58

 
10

8.
53

 

ef
fe

ct
iv

e 
po

in
t 

nu
m

be
r 

to
 b

e 
co

m
pu

te
d 

ta
ki

ng
 i

nt
o 

ac
co

un
t 

th
e 

sy
m

m
et

ry
 r

ed
uc

ti
on

 (
se

e 
R

ef
. 

[2
7]

).
 



M
ol

ec
ul

e 
H

N
O

 
C

O
2 

P
la

ne
 

C
om

po
si

te
 

S
im

pl
ex

 
C

ro
ss

 
F

ac
to

ri
al

 
C

om
po

si
te

 
C

om
po

si
te

 
F

ac
to

ri
al

 
C

om
po

si
te

 
S

im
pl

ex
 

R
eg

re
ss

io
n 

G
ra

di
en

t 
G

ra
di

en
t 

G
ra

d
ie

n
t 

G
ra

d
ie

n
t 

G
ra

d
ie

n
t 

E
ne

rg
y 

G
ra

di
en

t 
G

ra
d

ie
n

t 
G

ra
d

ie
n

t 
O

rd
er

 
3 

2 
2 

2 
2 

2 
3 

3 
3 

P
oi

nt
 n

um
be

r"
 

11
 

5 
7 

9 
15

 
15

 
15

 
15

 
5 

O
 

~"
 

0.
99

99
 

0.
99

99
 

0.
99

92
 

0.
99

93
 

0.
99

93
 

0.
99

98
 

0.
99

99
 

0.
99

99
 

0.
99

99
 

S
ec

on
d 

de
ri

va
ti

ve
s 

11
 

1.
66

2 
1.

45
2 

1.
45

3 
1.

45
0 

1.
45

1 
1.

44
9 

1.
45

0 
1.

45
1 

3.
82

9 
22

 
1.

66
2 

3.
51

0 
3.

48
0 

3.
47

7 
3.

47
8 

3.
47

8 
3.

47
6 

3.
47

7 
3.

82
9 

33
 

0.
18

1 
0.

35
3 

0.
34

8 
0.

34
8 

0.
34

8 
0.

34
8 

0.
34

8 
0.

34
8 

0.
17

2 
12

 
-0

.0
1

8
 

0.
14

8 
0.

16
0 

0.
16

0 
0.

16
0 

0.
16

0 
0.

16
0 

0.
16

0 
0.

45
3 

13
 

0.
07

1 
0.

02
1 

0.
02

3 
0.

02
3 

0.
02

3 
0.

02
3 

0.
02

3 
0.

02
3 

-0
.0

0
1

 
23

 
0.

07
1 

0.
17

3 
0.

16
8 

0.
16

8 
0.

17
0 

0.
17

0 
0.

17
0 

0.
17

0 
0.

00
1 

S
ta

ti
on

ar
y 

po
in

t 

dl
 (

~
) 

1.
01

46
 

1.
02

65
 

1.
02

67
 

1.
02

69
 

1.
02

68
 

1.
02

67
 

1.
02

65
 

1.
02

65
 

1.
16

11
 

d2
 (

.~
) 

1.
01

46
 

1.
19

90
 

1.
19

93
 

1.
19

97
 

1.
19

95
 

1.
19

99
 

1.
19

89
 

1.
19

89
 

1.
16

11
 

~-
(~

 
10

8.
52

 
11

0.
81

 
11

0.
85

 
11

0.
91

 
11

0.
90

 
11

0.
85

 
11

0.
80

 
11

0.
80

 
18

0.
00

 

o o O
 

g~
 

r~
 

o g~
 

W
 

o t~
 



556 M. Sana 

Then we find that the bias importance is given by 

for simplex design: [ ~ i i ' l / ~ i i '  ~ -  l o - - l [ ~ i i ' l / ~ i i ' O  0 

--2 0 0 for cross, factorial or composi te  designs: f t , , u~[3 , ,  ~- 10 /3~r 

We conclude that the last designs, accurate in terms of the coefficient variance, 
remain valuable for bias. Let  us also r em em ber  as explain before that the terms 
b~jlt with i #/" can be estimated in the same plane as long as the point number  
is larger than the regression coefficient number.  In such a case only the bei terms 
remain biased. 

6. Applications 

We present  here the applications of the method to some small compounds.  Our  
purpose is to show the stability of the regression more  than the accuracy of the 
absolute value of the successive derivatives. This last point is more  depending 
of the level of sophistication in the theoretical method used (basis set, SCF and 
CI) than of the numerical  method itself. All the actual computat ions are done 
with the 6 -31G basis set of Pople [18] and'we use the S C F - R H F  or U H F  method 
(with G A U S S I A N - 7 0  program [19]) to solve the Har t r ee -Fock  equations. It 
has been shown elsewhere that such kind of computat ion leads to a force constant 
matrix overest imated by about  10% [20]. To compute  the gradient we are using 
the F O R C E  program of Schlegel [21]. In Tables 3 and 4 we present  the results 
for the molecules H20 ,  NH2, H N O  and CO=. The program P L A N  [22] is used 
for selecting the point distribution and M U L F R A  [23] is employed for the 
regressions. We can see that the quantities computed using gradient are in perfect 
agreement  with the one computed  by using the classical fit on the energy [4]. It  
exists only less than one percent  of difference on the regression coefficients when 
we compare  the different methods.  The less efficient regression seems to be the 
simplex design. Reasons for this have been explained in the last section. 

Table 4. Anharmonic force constant hypermatrix for some small compounds (same units as Table 3) 

Molecule H20 NH~ HNO 
Plane Composite Factorial Composite Factorial Composite 
Regression Gradient Gradient Gradient Gradient Gradient 

Third 
derivatives 

111 -7.463 -5.520 -5.537 -5.144 -5.123 
222 -7.463 -5.520 -5.537 -11.981 -11.994 
333 -0.101 -0.107 -0.106 -0.206 -0.204 
112 0.017 0.016 0.021 0.542 0.547 
113 0.004 0.016 0.016 0.009 0.009 
122 0.017 0.016 0.021 -1.214 -1.215 
223 0.004 0.016 0.016 -0.439 -0.439 
133 -0.055 -0.043 -0.042 -0.008 -0.008 
233 -0.055 -0.043 -0.042 -0.629 -0.628 
123 -0.134 -0.120 -0.120 -0.128 -0.128 
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Finally we can see that the introduction of the anharmonicity terms does not 
disturb the quadratic terms. The stationary point location remains insensible to 
the kind of regression up to 10 -3 ~ and 0.1 degree. 

As we have seen a sufficiently small region (+0.015 A on the bond lengths and 
+4 ~ on the angles) the second derivative matrix in the harmonic approximation 
remains stable by adding anharmonic terms. Such a property does not hold 
further under enlargement of the experimental domain. Our experience is that 
the inclusion of the third order regression coefficients let us enable to consider 
a domain at least three times larger than the present one without disturbing the 
accuracy of the second order regression coefficients. Examples exist [4] for which 
the quadratic approximation remains valid for very large regions. 

Other works are now realized on larger molecules and super-molecules (such 
as transition structures [26]). The present technique always remains accurate. 
They will be published separately. 

7. Conclusion 

The here presented work let us enable by a regression on the gradient to find 
a local analytical surface around any stationary point of interest. In all cases the 
point distribution must be carefully chosen in order to be sure to lower the 
regression coefficient variance. 

The estimation of the harmonic force constant matrix may be done by using the 
simplicial or the cross experimental planes. Both provides a diagonal variance- 
covariance matrix which guarantees an independent estimation on each 
coefficient and simplifies as much as possible the numerical aspect of the least 
square fit even for large molecules. The simplicial plane has two advantages: 

(1) it contains as few points as possible and 
(2) it may be translated in the k-dimensional space of the internal parameters 
by recomputing only one point each times. 

On another hand the cross plane let us enable to further investigation for 
computing the anharmonic contributions; it provides also best estimation of the 
quadratic terms (closer to the one given by a composite plane) and can be splitted 
more easily when numerical stability problems are met. 

Factorial plane and composite plane are adequate to obtain the cubic force 
constant matrix and some quartic terms. In table V we show the requested work 
in order to find quadratic and cubic regression coefficients from 2 up to 9 atoms 
in the molecular supersystem of interest. Those designs have also the basic 
structure for computing completely the quartic terms [24]; progress is now 
attempted in this direction. 

The interest of such a work is also to show that everytimes an analytical derivative 
(at the order n) for any molecular property is available, it remains possible by 
a numerical approach to have at our disposal the derivatives at the order n + 1, 
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Table 5. The requested work to estimate the harmonic and anharmonic force constant matrices 

Coefficient number Point number to evaluate the gradient 
k Order 2 Order 3 Simplex Doehlert Composite (a) 

3 10 20 5 13 9 + 6  
6 28 84 8 43 17(+16) + 12 
9 55 220 11 91 33(+32) + 18 

12 91 455 14 157 65(+64) + 24 
15 136 816 17 241 65(+64) + 30 
18 190 1330 20 343 129(+128) + 36 
21 253 2024 23 463 257 + 42 

a the first number corresponds to the lowest centered fractional replicate of the whole factorial plane, 
between parenthesis the possible increasing and finally the cross vertices, 

n + 2 and later n + 3. To reach this goal we  only have to choose  properly the 
point distribution. 
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